GEOCHEMICAL ANALYSIS OF SANDSTONE OF LAUNGSHE FORMATION IN THE ALE BAN AREA, TILIN TOWNSHIP, MAGWAY REGION

Kyaw Khaing¹ and Day Wa Aung²

Abstract

The present study mainly focuses on the Geochemistry of Clastic sedimentary rock mainly on the sandstones of Early Eocence Laungshe Formation exposed in the northernmost part of the Minbu Basin, Tilin, Magwe region. The study attempts to constrain their source rocks, palaeo-weathering and tectonic setting of the provenance. The study area mainly consists of Tertiary Clastic Sedimentary rocks. Selected samples from the research area were analyzed using X-ray Fluoresence (XRF) for major oxides and some trace elements to know the chemical composition of sandstone and to classify the sandstone. Lithologically, the Laungshe Formation is mainly composed of thinly laminated dark grey to bluish grey shale intercalated with thin to mediumbedded sandstones. By the XRF analysis, sandstones of the sandstones are Fe-sand composition. By the discriminant diagram the Laungshe sandstones samples indicating the mafic igneous provenance. Moreover, sandstones of The Laungshe Formation were deposited in the active continental margin shifted to the downward of the oceanic island arc field. Additionally, the average CIA and CIW values of Laungshe sandstones indicate extreme degree of chemical weathering might have taken place in the source area.

Keywords: Litharenite, Mafic igneous provenance, Active continental margin

Introduction

The research area, northernmost part of the Minbu Basin, is located at 16 km east of Tilin, Magwe region. It lies between latitudes 21° 36' N and 21° 44' N and longitudes 94° 09' E and 94° 17' E in UTM-No 2194-02 and 2194-06. The location map of the study area is shown in figure (1). Tilin is easily accessible from Pakokku by car. The western part of the study area can be easily accessible by car from Pakokku to Tilin throughout the year but the eastern part of the study area is less accessible in rainy reason.

The research area is a mountainous and forested region and the ranges are running northsouth direction. Because of the sandstone dominant and shale dominant formation, this area shows ridge and valley topography. The whole area is occupied by thick soil cover and cultivation is good. The study area is swampy during rainy season. It lies between Pondaung range and the eastern flank of the Chin hill. Three dimensional map of the study area is shown in figure (2).

¹ Assistance Lecturer, Department of Geology, Pakokku University

² Dr, Professor and Head, Department of Geology, University of Yangon

Figure 1 Location map of the study Area

Methodology

The X-ray Fluoresence (XRF) analysis conducted to know the chemical composition of sandstone and to classify the sandstone. The samples collected in the field were performed chemical analysis as X-ray Fluoresence. This method is most widely used analysis techniques in the application of quantitative major element analysis, minor and trace element analysis (Hutchison, 1974). Selected samples from the research area were analyzed using X-ray Fluoresence (XRF) for major oxides and some trace elements. In this research, X-ray Fluoresence (XRF) analyses were be done to interpret the chemical classification and weathering of the clastic sediments.

Figure 2 3D Map of the Ale ban Area, Tilin Township

Geochemical Analysis of Sandstone

Geochemical data are useful in the analysis of provenance studies, tectonic setting of basin, weathering, transport and erosion of sediments, depositional and diagnetic processes (Rollison, 1993). In geochemical analysis, the mineralogical and chemical composition of clastic sedimentary rocks are controlled by various factors, including (1) the composition of their source rocks, (2) environmental parameters influencing the weathering of source rocks (e.g., temperature, rainfall and topography), (3) duration of weathering, (4) transportation mechanism of clastic material from source region to depocenter, (5) depositional environment and (6) post-depositional processes (e.g., diagenesis and metamorphism).

The present study examines the geochemistry of sandstones including Laungshe Formations attempts to constrain their source rocks, palaeoweathering and tectonic setting of the provenance. Owing to limitations of analytical facilities, the present work is based on chemical analyses data of major elements of the investigated sandstones of the study area. The geochemical composition (Wt %) of Laungshe sandstones are shown in the Table (1).

Element	LS-2	Ls-6	LS-8	Ls-10	Ls-14	Ls-20	Ls-22	Ls-24	Ls-36	Ls-42
SiO ₂	48.07	55.14	61.2	59.74	57.58	56.9	60.86	60.59	41.87	60.85
Al ₂ O ₃	13.22	14.61	13.71	15.68	14.65	13.72	12.79	13.8	12.42	14.99
Fe ₂ O ₃	6.062	6.811	5.051	4.785	5.701	4.793	5.918	5.984	5.17	5.05
Na ₂ O	1.12	1.1	1.47	1.3	1.28	1.12	1.49	1.58	1.24	1.39
K ₂ O	1.06	1.16	1.01	1.08	0.997	1.11	0.899	0.89	1.19	1.29
SO ₃	0.044	0.033	0.045	0.03	0.032	0	0.047	0	0	0.031
TiO ₂	0.765	0.633	0.533	0.765	0.578	0.76	0.594	0.541	0.686	0.736
CaO	5.516	2.261	1.784	0.414	2.482	0.449	0.0948	0.496	16.5	0.3
MnO	0.179	0.102	0.237	0.0591	0.198	0.0345	0.0948	0.044	0.271	0.0339
Cr_2O_3	0.0832	0.0432	0.0653	0.0966	0.0719	0.119	0.129	0.0511	0.0525	0.103
SrO	0.0223	0.0205	0.0142	0.0109	0.0162	0.0102	0.0118	0.0109	0.0387	0.0107
P_2O_5	0.044	0.071	0.0775	0.074	0.103	0.046	0.056	0.07	0.123	0.036
ZrO2	0.0212	0.0122	0.0131	0.0191	0.0128	0.0187	0.0187	0.0128	0.0267	0.017
CuO	0.006	0	0	0	0	0	0	0	0	0.006
Rb ₂ O	0.004	0	0	0.003	0	0	0	0	0.003	0.004
ZnO	0.0099	0.0096	0.0078	0.0088	0.009	0.0085	0.0085	0.0079	0.0089	0.0099
NiO	0.0116	0.0126	0.01	0.0117	0.0099	0.0143	0.0126	0.0115	0	0.0126
FeO	0	0	0	0	0	0	0	0	0	0
MgO	1.63	1.827	1.52	1.87	1.861	1.36	1.38	1.581	2.835	2.143

Table 1 Chemical Composition of Laungshe Sandstone

Geochemical classification of sandstones

The composition of sandstone can be got from XRF analysis. To conduct XRF analysis, 10 sandstone samples were taken from the selected layer of sandstones from Laungshe Formation.

Sandstones are classified and named variously based on their chemical composition. In the present study, sandstones were classified according to the scheme proposed by Pettijohn *et al.* (1972) and Herron (1988). Although Pettijohn et al. (1972) classified the sandstones based on the bivarious log (Na_2O/K_2O) versus log (SiO_2/Al_2O_3) diagram. Herron (1988) proposed the bivariate log (Fe_2O_3/K_2O) versus log (SiO_2/Al_2O_3) diagram. Herron also examined the importance of the major oxide variables and classified the clastic rocks mainly as Fe-sands with little portions on the wacke zone. The results of log ratio are plotted on the diagrams of sandstone

classification. The geochemical classification diagrams of Pettijohn et al., (1972) (figure-3) pointed that Laungshe sandstones fell within the litharenite zone. However one sample of Laungshe sandstone is greywacke. Herron (1988) (figure-4) also pointed out Laungshe sandstones are Fe-sand except one samples of sandstone.

Figure 3 Chemical classification diagram of Pettijohn et al. (1972) of Laungshe sandstones

Figure 4 Chemical classification diagram of Herron (1988) of Laungshe sandstones

Source rock lithology and tectonic provenance

In the published literature several major-, trace-, rare-earth element-based discrimination diagram are proposed to decipher the source rock of the siliciclastic sedimentary rocks (eg., Taylor and MclLennan, 1985; Roser and Korsch, 1988; McLennan *et al.*, 1993; Condie, 1993; Gu *et al.*, 2002; Cingolani *et al.*, 2003; Asieudu *et al.*, 2004). In order to use major element of provenance interpretations we considered the discriminant functions of Roser and Korsch (1988), which use Al₂O₃, TiO₂, Fe₂O₃, MgO, Cao, Na₂O and K₂O contents as variables. In the discriminant diagram (figure-5), the Laungshe sandstones samples plot in the field of mafic igneous provenance. The Al₂O₃ and TiO₂ contents of the siliciclastic sedimentary rocks are considered as significant indicators of their provenance. During weathering of source rocks, Al and Ti remain essentially immobile, owing to solubility of their oxides and hydroxides in low temperature aqueous solutions (e.g., Stumm and Morgan, 1981; Yamamoto et al., 1986; Sugitani et al., 1996). It is well known that in normal igneous rocks Al resides mostly in feldspars and Ti in mafic minerals (e.g., olivine, pyroxene, hornblende, biotite, ilmenite).

Figure 5 Discriminant function diagram for the provenance signation of the Laungshe sandstones using major elements, Roser and Korsch (1988)

Several studies have shown that the chemical composition of siliciclastic sedimentary rocks are significantly controlled by plate tectonic settings of their provenances and depositional basins, and as a result, the siliciclastic rocks from different tectonic settings possess terrain-specific geochemical signatures (Bhatia, 1983; Bhatia and Crook, 1986; Roser and Korsch, 1986). Among the various tectonic setting discrimination diagrams, the major element-based discrimination diagrams of Bhatia (1983) and Roser and Korsch (1986) are widely used. In the discrimination diagram of Bhatia (1983) and Roser and Korsch (1986) the bivariates, including discriminant functions, are based on immobile and variable mobile major elements, including Na₂O and K_2O .

In the present study, the discrimination diagrams proposed by Bhatia (1983) used to discuss the tectonic setting by the major element geochemistry of sandstone samples. The Laungshe sandstones were deposited in the active continental margin (figure 6c). However, in the diagrams of Bhatia 1983 (figure 6a and b), some of the Laungshe sandstones are shifted to the right of the oceanic island arc field because of Fe composition is high.

Figure 6 Plot of the major element composition of the Laungshe sandstone on the tectonic setting discrimination diagrams of Bhatia (1983). a: Fe₂O₃+ MgO vs TiO₂;
b: Fe₂O₃+MgO vs Al₂O₃/SiO₂; c: discrimination diagram. A: Oceanic island are, B: Continental island arc, C: Active continental margin, D: Passive margin.

Geochemical weathering of source area

Intensity of chemical weathering of source rocks is controlled mainly by source rock composition, duration of weathering, climatic and rates of tectonic uplift of source region. About 75% of the labile materials of the upper crust is composed of feldspars and volcanic glass and chemical weathering of these materials ultimately results in the formation of clay minerals (e.g., Nesbitt and Young, 1982, 1989; Taylor and McLennan, 1985). During chemical weathering Ca, Na and K are largely removed from source rocks.

The degree of source rock weathering is quantified variously. A few indices of weathering have been proposed based on molecular proportion of mobiles and immobiles element oxides (Na₂O, CaO, K₂O and Al₂O₃). Among the known indics of weathering/alteration the Chemical index of Alteration (CIA; Nesbitt and Young, 1982) is well established as a method of quantifying the degree of source weathering. Source weathering and elemental redistribution during diagenesis also can be assessed using Chemical Index of weathering (CIW; Harnois, 1988). The weathering effects can be evaluate in terms of the molecular percentage of the oxide components, using the formulae of chemical index of weathering (CIW= [Al₂O₃/ Al₂O₃+ CaO + Na₂O] x 100); (Harois, 1988) and chemical index of alteration (CIA= [Al₂O₃/ Al₂O₃+ CaO + Na₂O + K₂O] x 100); (Nesbitt and Young, 1982). The CIA and CIW are interpreted in similar way with values of 50 for unweathering upper continental crust and roughly 100 for highly weathered materials, with complete removal of alkali and alkaline-earth elements (McLennan, 1993). Low CIA values (i.e. 50 or less) also might reflect cool and/or arid conditions (Fedo *et al*, 1995).

According to CIA values, the Laungshe sandstone of the degree of source weathering varies from 40 to 85% (average= 75.6%). CIW values suggest the degree of source weathering in the range from 39 to 79% (average= 80%). Average CIA and CIW values indicate extreme degree of source weathering.

Mobility of elements during the progress of chemical weathering of source material and post-depositional chemical modifications of the sandstones can be evaluated by plotting the molar proportions of Al_2O_3 , Na_2O_+ CaO and K_2O in A-CN-K ternary disgram (Nesbitt and Young, 1982). Weathering trends might be predicated to be parallel to the A-CN join towards the composition of Al_2O_3 and Na and Ca are removed by chemical weathering of plagioclase feldspars. The average values of Laungshe sandstones indicate extreme degree of chemical weathering (figure-7)

Figure 7 A-CN-K ternary Laungshe sandstone of weathering diagram $A = Al_2O_3$; CN= (CaO+Na₂O); K=K₂O (Nesbitt and Young, 1982)

Conclusion

The research area, northernmost part of the Minbu Basin, is located at 16 km east of Tilin, Magwe region. It lies between latitudes 21° 36' N and 21° 44' N and longitudes 94° 09' E and 94° 17' E in UTM-No 2194-02 and 2194-06. The present study examines the geochemistry of sandstones including Laungshe formations attempts to constrain their source rocks, palaeoweathering and tectonic setting of the provenance. Laungshe sandstones fell within the litharenite zone. However one sample of Laungshe sandstone is greywacke. The Laungshe sandstones were deposited in the field of mafic igneous provenance. The Laungshe sandstones were deposited in the active continental margin. The average values of Laungshe sandstones indicate extreme degree of chemical weathering.

Acknowledgements

I would like to express our gratitude to Dr Win Win Maw, Professor and Head, Pakokku University, for her permission and departmental facilitates and Dr Thin Thin Han, Professor, Department of Geology, Pakokku University. I am greatly thankful to Dr Day Wa Aung, Professor and Head, University of Yangon, for his guidance and invaluable suggestions. I would like to state my thanks to Dr Paike Htwe, Lecturer in Geology Department, Pakokku University for his helpful during field trip, valuable suggestion. Finally, I wish to thank to all teachers in Geology Department, Pakokku University, for their help and encouragement throughout the course of this research work.

References

Bhatia, M. R., (1983), Plate tectonics and geochemical composition of sandstones: Journal of Geology, 91, 611-627.

- Bhatia, M. R., Crook, K. A. W.,(1986), Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins: *Contributions to mineralogy and Petrology*, 92, 181-193.
- Fedo, C. M., Nesbitt, H. W., & Young, G. M., (1995), Unraveling the effects of potassium metasomaticsm in sedimentary rocks and paleosols, with implication for paleoweathering conditions and provenance, *Geology*, 23, p.921-924.
- Harnois, L., (1988), The CIW index: A new chemical index of weathering: Sedimentary Geology, 55, 319-322.
- Herron, M. M., (1988), Geochemical classification of terrigenous sands and shales from core or log data: *Journal of sedimentary Petrology*, 58, 820-829.
- Hutchison, C. S., (1974), Laboratory Hand Book of Petrographic Techniques.
- McLennan, S. M., (1993), Weathering and global denudation: The journal of Geology, 101, 295-303.
- Nesbitt, H. W., Young, G. M., (1982), Early Proterozoic climates and plate motions inferred from major element chemistry of lutites: Nature, 299, 715-717.
- Pettijhon, F. J., Potter, P. E., Siever, R., (1972), Sand and Sandstone: New York, Springer-verlag.
- Roser, B. P., Korsch, R. J., (1986), Determination of tectonic setting of sandstone-mudstone suites using SiO₂ content and K₂O/Na₂O ratio: *Journal of Geology*, 94, 635-650.
- Roser, B. P., Korsch, R. J., (1988), Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data: *Chemical geology*, 67, 119-139.
- Taylor, A. S., McLennan, S. M., (1985), the continental crust: its composition and evolution: Oxford, Blackwell, 312 p.